Abstract
Long-range alignment ordering of fibroblasts have been observed in the vicinity of cancerous tumors and can be recapitulated with in vitro experiments. However, the mechanisms driving their ordering are not understood. Here, we show that local collision-driven nematic alignment interactions among fibroblasts are insufficient to explain observed long-range alignment. One possibility is that there exists another orientation field coevolving with the cells and reinforcing their alignment. We propose that this field reflects the mechanical cross-talk between the fibroblasts and the underlying fibrous material on which they move. We show that this long-range interaction can give rise to high nematic order and to the observed patterning of the cancer microenvironment.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have