Abstract

A dedicated solidification device and high speed camera were used to capture dendritic fragmentation of pure succinonitrile (SCN) induced by oscillating ultrasonic bubbles. Theoretical analysis of the melting behavior of the dendrite was performed based on local solidification thermodynamics. The dendritic growth or the evolution of the solid-liquid interface is closely related to both thermodynamics of the cavitation bubble and the local geometry of the dendrite. Accordingly, for the first time, a dimensionless scaling formulation was developed by fitting both theoretical and experimental data to determine the variational pressure exerted by the cavitation bubble.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.