Abstract

In the present paper we consider two representative methods for residual stress evaluation at the micro-scale: a (semi-)destructive method involving material removal and the measurement of strain relief; and a non-destructive X-ray diffraction technique involving the use of micro-focused synchrotron X-ray beam. A recently developed strain relief approach is described using a Focused Ion Beam (FIB) to create a circular trench of progressively increasing depth around a circular "island". Residual stress is evaluated by the comparison of the strain relief (measured by digital correlation of displacements or strains) with Finite Element simulations. The technique is illustrated for a thin TiN coating layer. The second approach uses focused synchrotron X-ray beams for white beam Laue diffraction. Demonstration experiments described involve in situ loading of commercially pure nickel foil. Procedures for validation and improvement of accuracy are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.