Abstract

The fabrication of thinnest, yet undeformed membrane structures with nanometer resolution is a prerequisite for a variety of Microelectromechanical systems (MEMS). However, functionally relevant thin films are susceptible to growth-generated stress. To tune the performance and reach large aspect ratios, knowledge of the intrinsic material properties is indispensable. Here, we present a new method for stress evaluation through releasing defined micro-cantilever segments by focused ion beam (FIB) milling from a predefined free-standing membrane structure. Thereby, the cantilever segment is allowed to equilibrate to a stress-released state through measurable strain in the form of a resulting radius of curvature. This radius can be back-calculated to the residual stress state. The method was tested on a 20 nm and 50 nm thick tunnel-like ALD ▪ membrane structure, revealing a significant amount of residual stress with 866 MPa and 6104 MPa, respectively. Complementary finite element analysis to estimate the stress distribution in the structure showed a 97% and 90% agreement in out-of-plane deflection for the 20 nm and 50 nm membranes, respectively. This work reveals the possibilities of releasing entire membrane segments from thin film membranes with a significant amount of residual stress and to use the resulting bending behavior for evaluating stress and strain by measuring their deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.