Abstract

A stationary independent increment process is the continuous time analogue of the discrete random walk, and, as such, has a wide variety of applications. In this paper we consider M(t), the maximum value that such a process attains by time t. By using renewal theoretic methods we obtain results about M(t). In particular we show that if μ, the mean drift of the process, is positive, then M(t)/t converges to μ, and E[M(t + h) – M(t)] → hμ.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.