Abstract
We study the transition of a scalar field in a fixed $AdS_{d+1}$ background between an extremum and a minimum of a potential. We compute analytically the solution to the perturbation equation for the vev deformation case by generalizing the usual matching method to higher orders and find the propagator of the boundary theory operator defined through the AdS-CFT correspondence. We show that, contrary to what happens at the leading order of the matching method, the next-to-leading order presents a simple pole at $q^2=0$ in accordance with the Goldstone theorem applied to a spontaneously broken dilatation invariance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.