Abstract
We consider the Maldacena conjecture applied to the near horizon geometry of a D1-brane in the supergravity approximation and present numerical results of a test of the conjecture against the boundary field theory calculation using DLCQ. We previously calculated the two-point function of the stress-energy tensor on the supergravity side; the methods of Gubser, Klebanov, Polyakov, and Witten were used. On the field theory side, we derived an explicit expression for the two-point function in terms of data that may be extracted from the supersymmetric discrete light cone quantization (SDLCQ) calculation at a given harmonic resolution. This yielded a well defined numerical algorithm for computing the two-point function. For the supersymmetric Yang-Mills theory with 16 supercharges that arises in the Maldacena conjecture, the algorithm is perfectly well defined; however, the size of the numerical computation prevented us from obtaining a numerical check of the conjecture. We now present numerical results with approximately 1000 times as many states as we previously considered. These results support the Maldacena conjecture and are within 10–15% of the predicted numerical results in some regions. Our results are still not sufficient to demonstrate convergence, and, therefore, cannot be considered to a numerical proof of the conjecture. We present a method for using a “flavor” symmetry to greatly reduce the size of the basis and discuss a numerical method that we use which is particularly well suited for this type of matrix element calculation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.