Abstract
Graphical Markov models use undirected graphs (UDGs), acyclic directed graphs (ADGs), or (mixed) chain graphs to represent possible dependencies among random variables in a multivariate distribution. Whereas a UDG is uniquely determined by its associated Markov model, this is not true for ADGs or for general chain graphs (which include both UDGs and ADGs as special cases). This paper addresses three questions regarding the equivalence of graphical Markov models: when is a given chain graph Markov equivalent (1) to some UDG? (2) to some (at least one) ADG? (3) to some decomposable UDG? The answers are obtained by means of an extension of Frydenberg’s (1990) elegant graph‐theoretic characterization of the Markov equivalence of chain graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.