Abstract
Chain graphs (CG) (= adicyclic graphs) use undirected and directed edges to represent both structural and associative dependences. Like acyclic directed graphs (ADGs), the CG associated with a statistical Markov model may not be unique, so CGs fall into Markov equivalence classes, which may be superexponentially large, leading to unidentifiability and computational inefficiency in model search and selection. It is shown here that, under the Andersson-Madigan-Perlman (AMP) interpretation of a CG, each Markov-equivalence class can be uniquely represented by a single distinguished CG, the AMP essential graph, that is itself simultaneously Markov equivalent to all CGs in the AMP Markov equivalence class. A complete characterization of AMP essential graphs is obtained. Like the essential graph previously introduced for ADGs, the AMP essential graph will play a fundamental role for inference and model search and selection for AMP CG models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.