Abstract

This paper shows that general relativity and ordinary continuum models of matter imply the presence of Cartan torsion. The key concept is that torsion can be viewed as translational holonomy per unit area, in the limit of very small areas. Translational holonomy is introduced as the nonclosure of the “development” of a space-time loop into a flat space-time. The translational holonomy around a charged rotating black hole is calculated. If a large collection of small rotating objects is approximated by continuous spinning matter, the resulting torsion and spin have the same relation as in Einstein-Cartan theory, except that the torsion traces remain zero for the simple model of spinning matter used here. Finally, this construction adds torsion to the list of nonpropagating fields which can be viewed as continuum density of holonomy around localized space-time boundaries, or around throats which are connected to further local topological structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.