Abstract

Influence maximization is one of the important contents of social network analysis. Many classical influence propagation models assume that there is a stable information propagation phenomenon between adjacent users, and do not consider the influence of internal structure information of the network on the actual information propagation. Therefore, an influence maximization algorithm based on group trust and local topology structure is proposed. In order to make full use of the important role of group in information propagation, the concepts of intra-group connectivity, inter-group diffusion and group trust are defined based on the characteristics such as group tightness. Then, an influence propagation algorithm based on the local topological structure of the group is proposed to extract the local structure information of different topological positions in the group, and calculate the propagation probability between users. Finally, the seed nodes were selected according to the credibility ranking of the group for influence propagation. Experiments on multiple data sets show that compared with other algorithms, the algorithm can achieve higher propagation efficiency and wider influence effect, which verifies the rationality and effectiveness of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.