Abstract

AbstractOne of the fundamental results in convex geometry is Busemann's theorem, which states that the intersection body of a symmetric convex body is convex. Thus, it is only natural to ask if there is a quantitative version of Busemann's theorem, i.e., if the intersection body operation actually improves convexity. In this paper we concentrate on the symmetric bodies of revolution to provide several results on the (strict) improvement of convexity under the intersection body operation. It is shown that the intersection body of a symmetric convex body of revolution has the same asymptotic behavior near the equator as the Euclidean ball. We apply this result to show that in sufficiently high dimension the double intersection body of a symmetric convex body of revolution is very close to an ellipsoid in the Banach–Mazur distance. We also prove results on the local convexity at the equator of intersection bodies in the class of star bodies of revolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.