Abstract
Let μ be a centered Gaussian measure on a separable Banach space E and N a positive integer. We study the asymptotics as N→∞ of the quantization error, i.e., the infimum over all subsets ℰ of E of cardinality N of the average distance w.r.t. μ to the closest point in the set ℰ. We compare the quantization error with the average distance which is obtained when the set ℰ is chosen by taking N i.i.d. copies of random elements with law μ. Our approach is based on the study of the asymptotics of the measure of a small ball around 0. Under slight conditions on the regular variation of the small ball function, we get upper and lower bounds of the deterministic and random quantization error and are able to show that both are of the same order. Our conditions are typically satisfied in case the Banach space is infinite dimensional.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.