Abstract

Small ball inequalities have been extensively studied in the setting of Gaussian processes and associated Banach or Hilbert spaces. In this paper, we focus on studying small ball probabilities for sums or differences of independent, identically distributed random elements taking values in very general sets. Depending on the setting – abelian or non-abelian groups, or vector spaces, or Banach spaces – we provide a collection of inequalities relating different small ball probabilities that are sharp in many cases of interest. We prove these distribution-free probabilistic inequalities by showing that underlying them are inequalities of extremal combinatorial nature, related among other things to classical packing problems such as the kissing number problem. Applications are given to moment inequalities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.