Abstract
Abstract The number and distribution of limit cycles of a perturbed Z 4 -equivariant Hamiltonian system are studied in this paper. The existence theory and stability theory of singular close orbits are applied to study the given perturbed system. By using the small parametric perturbation skills of differential equations, we find that the perturbed Z 4 -equivariant system has at least 20 limit cycles. The distribution of the above 20 limit cycles is also given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.