Abstract
All normal subloops of a loopG form a modular latticeLn(G). It is shown that a finite loopG has a complemented normal subloop lattice if and only ifG is a direct product of simple subloops. In particular,Ln(G) is a Boolean algebra if and only if no two isomorphic factors occurring in a decomposition ofG are abelian groups. The normal subloop lattice of a finite loop is a projective geometry if and only ifG is an elementary abelianp-group for some primep.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.