Abstract

The kinetics of growth of GaN/(0001) sapphire heteroepitaxial films have been examined in the relatively low substrate temperature range, 560–640 °C, using the reflection high energy electron diffraction (RHEED) specular reflection intensity monitoring technique. In particular, an alternate element exposure method of growth was employed in which Ga and N atoms were supplied separately (rather than simultaneously, as in conventional molecular beam epitaxy) to the substrate with the inclusion of a time delay between successive Ga flux and N flux exposures. We interpret the observed time dependent recovery of the RHEED specular reflection intensity during the time delay phases to be associated with Ga–N surface molecule migration on Ga-terminated surfaces and the activation energy for this migration process was determined to be 1.45±0.25 eV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.