Abstract
We define alternant codes over a commutative ring R and a corresponding key equation. We show that when the ring is a domain, e.g. the p-adic integers, the error-locator polynomial is the unique monic minimal polynomial (equivalently, the unique shortest linear recurrence) of the finite sequence of syndromes and that it can be obtained by Algorithm MR of Norton. WhenR is a local ring, we show that the syndrome sequence may have more than one (monic) minimal polynomial, but that all the minimal polynomials coincide modulo the maximal ideal ofR . We characterise the set of minimal polynomials when R is a Hensel ring. We also apply these results to decoding alternant codes over a local ring R: it is enough to find any monic minimal polynomial over R and to find its roots in the residue field. This gives a decoding algorithm for alternant codes over a finite chain ring, which generalizes and improves a method of Interlando et. al. for BCH and Reed-Solomon codes over a Galois ring.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have