Abstract

The extended Kalman filter (EKF) is a suboptimal estimator of the conditional mean and covariance for nonlinear state estimation. It is based on first order Taylor series approximation of nonlinear state functions. The unscented Kalman filter (UKF) and the ensemble Kalman filter (EnKF) are suboptimal estimators that are termed as Jacobian free because they do not require the existence of the Jacobian of the nonlinearity. The iterated form of EKF is an estimator of the conditional mode that employs an approximate Newton–Raphson iterative scheme to solve the maximization of the conditional probability density function. In this paper, the iterated forms of UKF and EnKF are presented that perform Newton–Raphson iteration without explicitly differentiating the nonlinear functions. The use of statistical linearization in iterated UKF and EnKF is a nondifferentiable optimization method when the measurement function is nonsmooth or discontinuous. All three iterated forms can be shown to be conditional mean estimators after the first iteration. A simple numerical example involving continuous and discontinuous measurment functions is included to evaluate the performance of the algorithms for the estimation of conditional mean, covariance and mode. A batch reactor simulation is shown for estimating both the states and unknown parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call