Abstract
In the fly,Calliphora erythrocephala, visual stimuli presented in an asymmetrical position with respect to the fly elicit roll or tilt movements of the head by which its dorsal part is moved towards the light areas of the surroundings (Figs. 4–7). The influence of passive body roll and tilt (gravitational stimulus) on the amplitude of these active head movements was investigated for two types of visual stimuli: (1) a dark hollow hemisphere presented in different parts of the fly's visual field, and (2) a moving striped pattern stimulating the lateral parts of one eye only. The response characteristics of the flies in the bimodal situation in which the gravitational stimulus was paired with stimulation by the dark hollow hemisphere can be completely described by the addition of the response characteristics for both unimodal situations, i.e. by the gravity-induced and visually induced characteristics (Figs. 8, 9). Therefore, the stimulus efficacy of the dark hollow hemisphere is independent of (=invariant with respect to) the flies' spatial position. The advantage of this type of interaction between gravity and visual stimulation for the control of body posture near the horizontal is discussed. In contrast, the efficacy of moving patterns depends on (=non-invariant with respect to) the spatial position of the walking fly. Regressive pattern movements exhibit their stronger efficacy with respect to progressive ones only when the gravity receptor system of the legs is stimulated. The stronger efficacy of downward vs upward movements can only be demonstrated when the flies are walking horizontally, independently of whether the leg gravity receptor system is stimulated by gravity or not (Fig. 10). The results are discussed with respect (1) to the invariance and non-invariance of the efficacy of visual stimuli with respect to the direction of the field of gravity, (2) to the formation of reference lines by the gravitational field which are used by the walking fly to determine the orientation of visual patterns, and (3) to the possible location of the underlying convergence between gravitationally and visually evoked excitation. As all types of head responses occur only in walking flies, we also discussed the possible influences of some physiological processes like arousal, proprioceptive feedback during walking and various peripheral sensory inputs on the performance of behavioural responses in the fly (Fig. 11).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have