Abstract

Since the last decades, extensive work have been done on the numerical modeling of mono-frequency sonoreactors, we here consider the modeling of dual-frequency sonoreactors. We first present the basic features of the CAMUS code (CAvitating Medium under UltraSound), for mono-frequency excitation. Computation at low, medium and high frequency are presented. Extension of the numerical tool CAMUS is also presented: Caflisch equations are modified to take into account the dual-frequency excitation of the sound. We consider 28–56, 28–100 and 28–200 kHz sonoreactors. Fields of cavitation bubble emergence are quite different from the ones under mono-frequency. Study of spatio-temporal dynamics of cavitation bubbles in a 28–56 kHz sonoreactor is also considered. Taking into account the pressure field induced by the dual-frequency wave propagation, we compute the Bjerknes force applied on the cavitation bubble that is responsible for the bubble migration. A two phase flow approach allows to compute the bubble migration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.