Abstract

As Field-Programmable Gate Array (FPGA) power consumption continues to increase, lower power FPGA circuitry, architectures, and Computer-Aided Design (CAD) tools need to be developed. Before designing low-power FPGA circuitry, architectures, or CAD tools, we must first determine where the biggest savings (in terms of energy dissipation) are to be made and whether these savings are cumulative. In this paper, we focus on FPGA CAD tools. Specifically, we describe a new power-aware CAD flow for FPGAs that was developed to answer the above questions. Estimating energy using very detailed post-route power and delay models, we determine the energy savings obtained by our power-aware technology mapping, clustering, placement, and routing algorithms and investigate how the savings behave when the algorithms are applied concurrently. The individual savings of the power-aware technology-mapping, clustering, placement, and routing algorithms were 7.6%, 12.6%, 3.0%, and 2.6% respectively. The majority of the overall savings were achieved during the technology mapping and clustering stages of the power-aware FPGA CAD flow. In addition, the savings were mostly cumulative when the individual power-aware CAD algorithms were applied concurrently with an overall energy reduction of 22.6%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call