Abstract
We analyse the stability of a thin film falling under the influence of gravity down a locally heated plate. Marangoni flow, due to local temperature changes influencing the surface tension, opposes the gravitationally driven Poiseuille flow and forms a horizontal band at the upper edge of the heater. The thickness of the band increases with the surface tension gradient, until an instability forms a rivulet structure periodic in the transverse direction. We study the dependence of the critical Marangoni number, a non-dimensional measure of the surface tension gradient at the onset of instability, on the associated Bond and Biot numbers, non-dimensional measures of the curvature pressure and heat-conductive properties of the film respectively. We develop a model based on long-wave theory to calculate base-state solutions and their linear stability. We obtain dispersion relations, which give us the wavelength and growth rate of the fastest growing mode. The calculated film profile and wavelength of the most unstable mode at the instability threshold are in quantitative agreement with the experimental results. We show via an energy analysis of the most unstable linear eigenmode that the instability is driven by gravity and an interaction between base-state curvature and the perturbation thickness. In the case of non-zero Biot number transverse variations of the temperature profile also contribute to destabilization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.