Abstract

The natural bite angle of bidentate phosphane ligands influences the isomer distribution (syn and anti) in (1-methylallyl)(bisphosphane)Pd OTf complexes. It was found (31P- and 1H-NMR studies) that the syn/anti ratio changes from 12 (dppp) to 1.3 (sixantphos). Molecular orbital calculations [PM3(tm) level] indicate that for ligands inducing a large bite angle, the phenyl rings of the ligand embrace the allyl moiety, thus influencing the syn/anti ratio. This bite-angle effect on the syn/anti ratio is transferred to the regioselectivity in stoichiometric allylic alkylation. Ligands inducing large bite angles direct the regioselectivity towards the formation of the branched product 2. Catalytic alkylation of (E)-2-butenyl acetate showed that for ligands with a small bite angle the regioselectivity of the catalytic and stoichiometric alkylation are in good agreement. This correspondence is worse for ligands with a larger bite angle, which is rationalised in terms of the relative rates of syn/anti isomerisation and alkylation. The ligand with the largest bite angle (sixantphos) gives the most active catalytic species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.