Abstract
The successful observation of superconducting flux lines (fluxons) in thin specimens both in conventional and high Tc superconductors by means of Lorentz and electron holography methods has presented several problems concerning the interpretation of the experimental results. The first approach has been to model the fluxon as a bundle of flux tubes perpendicular to the specimen surface (for which the electron optical phase shift has been found in analytical form) with a magnetic flux distribution given by the London model, which corresponds to a flux line having an infinitely small normal core. In addition to being described by an analytical expression, this model has the advantage that a single parameter, the London penetration depth, completely characterizes the superconducting fluxon. The obtained results have shown that the most relevant features of the experimental data are well interpreted by this model. However, Clem has proposed another more realistic model for the fluxon core that removes the unphysical limitation of the infinitely small normal core and has the advantage of being described by an analytical expression depending on two parameters (the coherence length and the London depth).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings, annual meeting, Electron Microscopy Society of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.