Abstract
Methodology development in carbohydrate chemistry entails the stereoselective formation of C–O bonds as a key step in the synthesis of oligo- and polysaccharides. The anomeric selectivity of a glycosylation reaction is affected by a multitude of parameters, such as the nature of the donor and acceptor, activator/promotor system, temperature and solvent. The influence of different solvents on the stereoselective outcome of glycosylation reactions employing thioglucopyranosides as glycosyl donors with a non-participating protecting group at position 2 has been studied. A large change in selectivity as a function of solvent was observed and a correlation between selectivity and the Kamlet-Taft solvent parameter π* was found. Furthermore, molecular modeling using density functional theory methodology was conducted to decipher the role of the solvent and possible reaction pathways were investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.