Abstract

High-flux 1-MeV electron irradiation in a high voltage transmission electron microscope is used to study the influence of interfaces and localised stress fields on {113}-defect generation in silicon. A semi-quantitative model is presented to explain the observations, suggesting that the silicon oxide/silicon interface is a stronger sink for self-interstitials than for vacancies. It is shown that the position and the height of the maximum of the {113}-defect density strongly depends on the strength of the interface as a vacancy sink and that compressive straining of the silicon substrate slows down the diffusion of vacancies towards the interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call