Abstract
We study the infimum of the Hausdorff and Vietoris topologies on the hyperspace of a metric space. We show that this topology coincides with the supremum of the upper Hausdorff and lower Vietoris topologies if and only if the underlying metric space is either totally bounded or is a UC space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.