Abstract
It is known that surfactants can induce flow in unsaturated porous media due to the dependence of capillary pressure on surface tension. A commonly observed feature in systems with surfactant-induced flow is a transient wetting/drying/wetting sequence associated with the propagation of a surfactant solute front under monotonic flow conditions. Previous efforts to model surfactant-induced flow in relatively complex (e.g., two-dimensional systems) have not successfully incorporated hysteretic moisture retention properties. In this research, hysteretic, two-dimensional simulations of surfactant-induced flow were performed to assess the potential importance of considering hysteresis in such simulations. Hysteretic simulation results were compared to experimental data and to non-hysteretic simulations. The results suggest that the inclusion of hysteresis in numerical simulations can improve the match between simulated and experimental results in systems with surfactant-induced unsaturated flow. Furthermore, the inclusion of hysteresis in numerical simulations played a significant role in predicting the distribution of the contaminant and correct pressure head/moisture condition at the end of the experiment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have