Abstract

This work analyzes in detail the effect of ferroelectric polarization patterns in methylammonium lead iodide (MAPbI3) thin-films on the J-V characteristics of the corresponding solar cells. The simulations are based on a finite-element discretization of the drift-diffusion equations and take into account the polarization pattern experimentally derived from piezoresponse force micrographs. Based on the knowledge of the crystalline structure, symmetry considerations and electrical simulations, we discuss models for the polarization orientation pattern and magnitude of the ferroelectric domains. We conclude that the in-plane polarization vectors have 45° orientation towards the domain walls and form herring-bone structures. The presence of ordered ferroelectric domains, even with a weak characteristic polarization magnitude enhances the power conversion efficiencies and are mandatory to reproduce the experimental J-V characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.