Abstract
An experimental study of the impact of glycerol/water drops onto a dry glass surface at Reynolds and Weber numbers around the splashing/deposition threshold is presented. Some new observed phenomena that may shed further light on the mechanisms underlying air bubble entrainment and splashing for high-viscosity liquids are presented and discussed. The experiments were recorded with a high-speed camera using two complementary lighting setups that enhance the visualization of different features of the air entrainment phenomena: backlighting with a light diffuser and oblique lighting without diffuser. Besides the ring of micro-bubbles surrounding the central entrapped bubble and the cloud of bubbles entrained as a result of the interaction between a levitated thin film and the solid surface, which have been studied by other authors in previous works, a second ring of micro-bubbles that delimits the outer cloud of bubbles has been detected in our investigation. Attention is mainly focused on analyzing the dependency of the behavior of the two rings of micro-bubbles on the drop impact velocity, the ranges of the relevant dimensionless numbers in which the rings are formed and the existence, in certain impact conditions, of an abrupt increase in the size of the second ring, which substantially modifies the impact outcome.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have