Abstract
We introduce the notion of absolutely developable and biholomorphic vector fields defined on almost Hermitian manifolds. It is shown that any developable vector field on a K¨ahlerian manifold is an absolutely developable vector field. It is also proved that, on a nearly Kahlerian manifold, an absolutely developable vector field ξ preserves the almost complex structure if and only if ξ is a special concircular vector field. In addition, we conclude that, on a quasi-Kahlerian or Hermitian manifold, a biholomorphic vector field ξ is a special concircular vector field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.