Abstract

This work reports on the behaviour of tenacious and transient pneumatic foams produced at large range of values of gas delivery rates (or superficial velocities) and surface tensions. Experimental data from the literature and produced in the course of this study were processed and analyzed. The tenacious foams were stabilized via Polyoxiethylene-2 sulfate (SDP(2)S) in presence of 0.024M NaCl and 0.003M AlCl(3) ( CMC = 1.83×10(-2) M) in the concentration range of 3.33×10(-3) M to 3.8×10(-2) M (0.18CMC -2.08CMC corresponding to values of the dynamic surface tension in the range of 42.7mN/m to 37.5mN/m. The range of gas delivery rates was from 20.5ml/min to 482.8ml/min. It was found out that the rate of foam generation coincides with the gas delivery rate until a certain critical value of the latter, beyond which the rate of foam growth exceeds the rate of gas delivery. The level of this exceeding depends on the dynamic surface tension. The lower the value of the dynamic surface tension the larger the level of this exceeding. This rule was found valid until a certain upper limit of the gas delivery rate, at which the dependence on the dynamic surface tension ceases to exist. The second set of experiments was conducted on transient foams. The latter were stabilized by three members of homologue surfactants series: sodium octylsulfate (SOS), sodium decylsulfate (SDeS), and sodium dodecylsulfate (SDS) in the concentration range of 0.01CMC -0.1CMC corresponding to 72.75mN/m to 68.18mN/m. The aqueous solutions of the three surfactant homologues had identical values of static surface tension at the same ratio C/CMC . Bikerman's "unit of foaminess" was measured for each particular case. It was shown that at identical equilibrium surface tensions both the foaminess and the rate of foam decay increase upon lengthening of the surfactant's hydrocarbon chain. It was indicated as well that the foaminess increases linearly upon raising the gas delivery rate until a certain critical value, above which substantial increase is observed. It was finally concluded that both the tenacious and the transient foams have completely different behaviour. For this reason they should be modeled separately but more experimental data are still needed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.