Abstract

Lithium is able to intercalate into graphite leading to various binary graphite intercalation compounds, that are well defined by their stage. Concerning the ternaries, there is little literature on the subject. Thermodynamical and structural data, that differ largely from those of the other alkali metals, lead one to foresee some serious difficulties in synthesising such ternary compounds. Many experiments have attempted to synthesise ternary graphite intercalation compounds with lithium, using successively very electronegative elements, then fairly electronegative species and lastly electropositive metals. Numerous results, that are wholly negative, are described in this paper. The calcium–lithium system only allows one to prepare a novel intercalation compound, that is a first stage ternary phase exhibiting a large interplanar distance. This latter suggests that the intercalated sheets consist of several superimposed atomic layers. The synthesis of this ternary is not easy, because it needs reagents of very high purity. It possesses the brightness of metals and its strong hardness is very unusual among graphite intercalation compounds. On the other hand, the charge transfer between the graphene planes and the intercalated sheets, that just allows the intercalation, is especially high, and much higher than the LiC 6 compound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.