Abstract
We construct a formal global quantization of the Poisson Sigma Model in the BV-BFV formalism using the perturbative quantization of AKSZ theories on manifolds with boundary and analyze the properties of the boundary BFV operator. Moreover, we consider mixed boundary conditions and show that they lead to quantum anomalies, i.e. to a failure of the (modified differential) Quantum Master Equation. We show that it can be restored by adding boundary terms to the action, at the price of introducing corner terms in the boundary operator. We also show that the quantum GBFV operator on the total space of states is a differential, i.e. squares to zero, which is necessary for a well-defined BV cohomology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.