Abstract

We consider the three-dimensional Ginzburg–Landau model for a solid spherical superconductor in a uniform magnetic field, in the limit as the Ginzburg–Landau parameter κ=1/ɛ→∞. By studying a limiting functional we identify a candidate for the lower critical field Hc1, the value of the applied field strength at which minimizers first exhibit vortices. For applied fields of this strength we show the existence of locally minimizing solutions with vortices located along a diameter of the sphere parallel to the applied field direction. To analyze these problems we use a combination of techniques, involving least perimeter problems, weak Jacobians and rectifiable currents, and special Hodge decompositions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.