Abstract

Extending our previous work we present implicit representations for the Navier-Stokes equations (NS) for an incompressible fluid in a smooth compact manifold without boundary as well as for the kinematic dynamo equation (KDE, for short) of magnetohydrodynamics. We derive these representations from stochastic differential geometry, unifying gauge theoretical structures and the stochastic analysis on manifolds (the Ito-Elworthy formula for differential forms). From the diffeomorphism property of the random flow given by the scalar Lagrangian representations for the viscous and magnetized fluids, we derive the representations for NS and KDE, using the generalized Hamilton and Ricci random flows (for arbitrary compact manifolds without boundary), and the gradient diffusion processes (for isometric immersions on Euclidean space of these manifolds). Continuing with this method, we prove that NS and KDE in any dimension other than 1 can be represented as purely (geometrical) noise processes, with diffusion tensor depending on the fluid's velocity, and we represent the solutions of NS and KDE in terms of these processes. We discuss the relations between these representations and the problem of infinite-time existence of solutions of NS and KDE. We finally discuss the relations between this approach with the low dimensional chaotic dynamics describing the asymptotic regime of the solutions of NS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.