Abstract
In this note we report on recent differential geometric constructions aimed at devising representations of braid groups in various contexts, together with some applications in different domains of mathematical physics. First, the classical Kohno construction for the 3- and 4-strand pure braid groups \(P_3\) and \(P_4\) is explicitly implemented by resorting to the Chen-Hain-Tavares nilpotent connections and to hyperlogarithmic calculus, yielding unipotent representations able to detect Brunnian and nested Brunnian phenomena. Physically motivated unitary representations of Riemann surface braid groups are then described, relying on Bellingeri’s presentation and on the geometry of Hermitian–Einstein holomorphic vector bundles on Jacobians, via representations of Weyl-Heisenberg groups.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have