Abstract

AbstractStudies have shown that in the mammalian neuromuscular system stretch reflexes are localized within individual muscles. Neuromuscular compartmentalization, the partitioning of sensory output from muscles, and the partitioning of segmental pathways to motor nuclei have also been demonstrated. This evidence indicates that individual motor nuclei and the muscles they innervate are not homogeneous functional units. An analysis of the functional significance of reflex localization and partitioning suggests that segmental control mechanisms are based on subdivisions of motor nuclei–muscle complexes. A partitioned organization of segmental control mechanisms could utilize (1) the potential functional diversity of muscle fiber types, (2) the variety of mechanical actions of individual muscles arising from their distributed origins and insertions, and (3) diverse architectural features such as intramuscular variations in pinnation and complex in-series and in-parallel arrangements of muscle fibers. The differentiated activity observed in some muscles during natural movements also calls for localized segmental control mechanisms. Partitioning may also play a role in mechanical interactions between contracting motor units and in increasing the stability of neuromuscular systems. The functional advantages of reflex localization and partitioning suggest they are probably common features of segmental systems, whose organization reflects the structure and function of their associated neuromuscular systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.