Abstract

In this work we perform Finite Element simulations within the framework of large deformation elasto-viscoplasticity on a material that is sensitive to the gradients of plastic strain and incorporates a single intrinsic length scale parameter. Both small scale yielding simulations and those on a finite sized sample show that large stress enhancements can occur at the tip of a notch due to gradient effects. The amount of plastic strain and opening stress that can be expected at the notch tip depends on an interplay between the notch radius, specimen dimensions and boundary conditions. It is shown that cleavage can be the favored criterion for failure in even a ductile material when the notch radius is small compared to the intrinsic length scale. Moreover, for large intrinsic length scales, failure may not always initiate at a notch but may be triggered away from it due to the presence of a boundary impermeable to dislocations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call