Abstract
This paper presents a simplified numerical model capable of analysing the interaction between the structural dynamic response of elastic-plastic struck plate wall of a fluid tank subjected to wedge impact and the resulting fluid motion. The Variational Finite Difference Method (VFDM) is applied to analyse the structural dynamics of the struck plate and 2-D linear potential flow theory is used to study the resulting fluid motion and its effects on the structural dynamics of the struck plate. Experiments of a wedge indenter impacting with both empty and 90% filled tanks are carried out to study the structural deformation of the struck plate. The accuracy of the developed numerical model is validated with published results and experimental results, and good agreement is achieved. Through the comparison of the impact behaviour of empty and partially filled water tank, it is found that the resulting water motion helps to reduce the structural deformation of the struck plate since part of the impact energy is dissipated by the resulting water motion. Parametric studies are performed to investigate the effect of impact velocity and water level on the structural dynamics of the struck plate of a partially filled water tank. A case study is also conducted to demonstrate the potential application of the proposed method in analysing ship-ice impact problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.