Abstract

Let G be a finite soluble group that is generated by a conjugacy class consisting of elements of order 3. We show that there exist four conjugates of an element of order 3 that generate a subgroup with the same Fitting height as G. We use this result to find a soluble analogue of the Baer–Suzuki theorem in the case prime 3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.