Abstract

Let G be a finite soluble group with Fitting subgroup F(G). The Fitting series of G is defined, as usual, by F0(G) = 1 and Fi(G)/Fi−1(G) = F(G/Fi−1(G)) for i ≥ 1, and the Fitting height h = h(G) of G is the least integer such that Fn(G) = G. Suppose now that a finite soluble group A acts on G. Let k be the composition length of A, that is, the number of prime divisors (counting multiplicities) of |A|. There is a certain amount of evidence in favour of theCONJECTURE. |G:Fk(G)| is bounded by a number depending only on |A| and |CG(A)|.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.