Abstract

The paper presents results of unsolicited exploratory design studies done by the authors into the feasibility of developing for a super-heavy launch vehicle a single-stage oxygen-hydrocarbon acceleration/deceleration unit (ADU) with two liquid-propellant rocket engines 11D58M developed by RSC Energia, intended for insertion of manned spacecraft into lunar orbit, as well as for insertion of super-heavy spacecraft into geostationary orbit (including the orbital module high-apogee transfer profile using lunar gravity assist maneuver). It demonstrates that the single-stage ADU will have a number of important advantages over both a single-stage oxygen-hydrogen ADU and a functionally similar two-stage acceleration/deceleration system of an orbital module in the form of a tandem stack of an oxygen-hydrogen acceleration stage and correction and braking stage. To assure the start-ups of the main liquid propulsion system of the ADU, it proposes a new method for inertial propellant component phase separation in the tanks in zero-gravity environment using a pre-startup pre-programmed ullage separation turn maneuver of the orbital unit about its transverse axis of inertia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.