Abstract
This paper is devoted to the functional analytic approach to the problem of the existence of Markov processes in probability theory. More precisely, we construct Feller semigroups with Dirichlet conditions for second-order, uniformly elliptic integro-differential operators with discontinuous coefficients. In other words, we prove that there exists a Feller semigroup corresponding to such a diffusion phenomenon that a Markovian particle moves both by jumps and continuously in the state space until it dies at the time when it reaches the boundary.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have