Abstract

It is shown that a variety of deterministic cellular automaton models of highway traffic flow obey a variational principle which states that, for a given car density, the average car flow is a nondecreasing function of time. This result is established for systems whose configurations exhibits local jams of a given structure. If local jams have a different structure, it is shown that either the variational principle may still apply to systems evolving according to some particular rules, or it could apply under a weaker form to systems whose asymptotic average car flow is a well-defined function of car density. To establish these results, it has been necessary to characterize among all number-conserving cellular automaton rules which ones may reasonably be considered as acceptable traffic rules. Various notions such as free-moving phase, perfect and defective tiles, and local jam play an important role in the discussion. Many illustrative examples are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.