Abstract
Electrostatic solitary waves in plasmas are the focus of many current studies of localized electrostatic disturbances in both laboratory and astrophysical plasmas. Here, an investigation of the nonlinear dynamics of plasma evolving in two dimensions, in the presence of excess superthermal background electrons and positrons, is undertaken. We investigate the effect of a magnetic field on weakly nonlinear ion acoustic waves. Deviation from the Maxwellian distribution is effectively modelled by the kappa model. A linear dispersion relation is derived, and a decrease in frequency and phase speed in both parallel and perpendicular modes can be seen, when the proportion of positrons to electrons increases. We show that ion acoustic solitary waves can be generated during the nonlinear evolution of a plasma fluid, and their nonlinear propagation is governed by a Zakharov-Kuznetsov (ZK) type equation. A multiple scales perturbation technique is used to derive the ZK equation. The solitary wave structures are dependent on the relation between the system parameters, specifically the superthermality of the system, the proportion of positron content, magnetic field strength, and the difference between electron and positron temperature. The parametric effect of these on electrostatic shock structures is investigated. In particular, we find that stronger superthermality leads to narrower excitations with smaller potential amplitudes. Increased positron concentration also suppresses both the amplitude and the width of solitary wave structures. However, the structures are only weakly affected by temperature differentials between electrons and positrons in our model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.