Abstract
We study the exact learnability of real valued graph parameters f which are known to be representable as partition functions which count the number of weighted homomorphisms into a graph H with vertex weights alpha and edge weights beta. M. Freedman, L. Lovasz and A. Schrijver have given a characterization of these graph parameters in terms of the k-connection matrices C(f,k) of f. Our model of learnability is based on D. Angluin's model of exact learning using membership and equivalence queries. Given such a graph parameter f, the learner can ask for the values of f for graphs of their choice, and they can formulate hypotheses in terms of the connection matrices C(f,k) of f. The teacher can accept the hypothesis as correct, or provide a counterexample consisting of a graph. Our main result shows that in this scenario, a very large class of partition functions, the rigid partition functions, can be learned in time polynomial in the size of H and the size of the largest counterexample in the Blum-Shub-Smale model of computation over the reals with unit cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.