Abstract

The Reynolds number effects on turbulent kinetic energy production and mean transport terms in near-wall turbulent channel flow are investigated analytically and with the help of direct numerical simulations (DNS). Using the momentum equation for turbulent channel flow, an analytical expression for the envelope of turbulent kinetic energy production curves is derived. It is shown that this envelope coincides with the wall-normal position at which the turbulent and viscous shear stress are equal. The DNS results carried out corroborate this finding and assess other quantitative details, namely the evolution of the peak of kinetic energy production and of its wall-normal position in terms of the Reynolds number. Empirical relations for the envelopes of the mean momentum transport terms and for their extrema position are also derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.