Abstract

By use of the microfluorimetric technique it is possible to study the diffusion of the fluorochrome di-dansylcystine (DDC) within isolated frog rod outer segments (ros) which are immobilysed in agarose gel. For this purpose, by a short hypotonic shock a leak is applied to one end of the ros. By this open end the DDC enters the rod and migrates through the whole outer segment. Following the propagation of the fluorescence boundary with time the cytoplasmatic diffusion constant can be determined if a chromatographic model is used to allow for the considerable binding of DDC to the inner membrane surface. With a binding constant K = 5 . 10(-4) cm the cytoplasmatic diffusion constant was found to be D = 1.3 . 10(-6) cm2/s whereas Dg = 2 . 10(-6 cm2/s and Dr = 3.5 . 10(-6) cm2/s were found in agarose gel or ringer solution, respectively. Using the mobility reduction factor given by D/Dr approximately equal to 0.4 to calculate the cytoplasmatic conductivity an inner resistance per length of 1.7 M omega/mu could be calculated for a frog rod which is in good agreement with corresponding data obtained from electrophysiological measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.